Energetics of Pore Opening in a Voltage-Gated K+ Channel
نویسندگان
چکیده
Voltage-dependent gating in K(+) channels results from the mechanical coupling of voltage sensor movements to pore opening. We used single and double mutations in the pore of the Shaker K(+) channel to analyze a late concerted pore opening transition and interpreted the results in the context of known K(+) channel structures. Gating sensitive mutations are located at mechanistically informative regions of the pore and are coupled energetically across distances up to 15 A. We propose that the pore is intrinsically more stable when closed, and that to open the pore the voltage sensors must exert positive work by applying an outward lateral force near the inner helix bundle.
منابع مشابه
Gated Access to the Pore of a Voltage-Dependent K+ Channel
Voltage-activated K+ channels are integral membrane proteins that open or close a K(+)-selective pore in response to changes in transmembrane voltage. Although the S4 region of these channels has been implicated as the voltage sensor, little is known about how opening and closing of the pore is accomplished. We explored the gating process by introducing cysteines at various positions thought to...
متن کاملVoltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom
Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...
متن کاملHanatoxin Modifies the Gating of a Voltage-Dependent K+ Channel through Multiple Binding Sites
We studied the mechanism by which Hanatoxin (HaTx) inhibits the drk1 voltage-gated K+ channel. HaTx inhibits the K+ channel by shifting channel opening to more depolarized voltages. Channels opened by strong depolarization in the presence of HaTx deactivate much faster upon repolarization, indicating that toxin bound channels can open. Thus, HaTx inhibits the drk1 K+ channel, not by physically ...
متن کاملMultiple pore conformations driven by asynchronous movements of voltage sensors in a eukaryotic sodium channel
Voltage-dependent Na(+) channels are crucial for electrical signalling in excitable cells. Membrane depolarization initiates asynchronous movements in four non-identical voltage-sensing domains of the Na(+) channel. It remains unclear to what extent this structural asymmetry influences pore gating as compared with outwardly rectifying K(+) channels, where channel opening results from a final co...
متن کاملLocalization and Molecular Determinants of the Hanatoxin Receptors on the Voltage-Sensing Domains of a K+ Channel
Hanatoxin inhibits voltage-gated K(+) channels by modifying the energetics of activation. We studied the molecular determinants and physical location of the Hanatoxin receptors on the drk1 voltage-gated K(+) channel. First, we made multiple substitutions at three previously identified positions in the COOH terminus of S3 to examine whether these residues interact intimately with the toxin. We a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 111 شماره
صفحات -
تاریخ انتشار 2002